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Abstract

The problem of transient, laminar, three-dimensional natural convection flow over an inclined permeable surface in the presence of a
magnetic field and heat generation or absorption effects is considered. The order of the governing differential equations for this investigation
is reduced by using transient non-similar transformations. The resulting initial-value problem is solved numerically by an accurate, implicit,
finite-difference line by line marching scheme. A parametric study is performed to illustrate the influence of the Prandtl number, Hartmann
number, heat generation or absorption coefficient, and the surface suction or injection parameter on the velocity and temperature fields as
well as the transient development of the skin-friction coefficients and the Nusselt number. These results are displayed graphically to show
special aspects of this flow and heat transfer situation. ©2000 Elsevier Science S.A. All rights reserved.

1. Introduction

Recently, Chamkha [10] has investigated the problem of
steady-state, laminar, hydromagnetic, three-dimensional free
convection flow over a vertical stretching surface in the pres-
ence of heat generation or absorption effects. This was done
in view of several possible metallurgical applications and
processes such as annealing and tinning of copper wires,
drawing of continuous filaments through quiescent fluids,
extrusion of films and plates, melt spinning, glass blow-
ing, hot rolling, manufacturing of plastic, rubber, metallic
and polymer sheets, crystal growing, continuous coating and
fibers spinning (see [19,33]). As mentioned by Vajravelu
and Hadjinicolaou [35], the rate of cooling involved in these
processes can greatly affect the properties of the end prod-
uct. This rate of cooling has been shown to be controlled by
the use of electrically-conducting working fluids with ap-
plied magnetic fields. The use of magnetic fields has also
been applied in the process of purification of molten metals
from non-metallic inclusions. Some work concerning hydro-
magnetic flows and heat transfer of electrically-conducting
fluids over a stretching surface can be found in the papers
by Chakrabarti and Gupta [8], Chiam [15], Chandran et al.
[12], and Vajravelu and Hadjinicolaou [35]. In many prac-
tical problems, the stretching of the surface can start im-
pulsively in motion from rest with a constant or variable
velocity in a stationary fluid. As a result, the velocity and
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temperature fields will change with time especially at the
start of the motion, thus having unsteady flow situation. The
objective of this work is to consider transient hydromag-
netic three-dimensional natural convection from an inclined
linearly stretching porous surface in the presence of mag-
netic field, heat generation or absorption, and wall suction or
injection effects.

Sakiadis [27,28] was the first to study boundary-layer flow
over a stretched surface moving with a constant velocity.
He employed a similarity transformation and obtained a nu-
merical solution for the problem. Later, Erickson et al. [18]
extended the work of Sakiadis [27,28] to account for mass
transfer at the stretched sheet surface. The numerical results
of Sakiadis [27,28] were confirmed experimentally by Tsuo
et al. [34] for continuously moving surface with a constant
velocity. In addition, Chen and Strobel [14] and Jacobi [23]
have reported results for uniform motion of the stretched sur-
face. Vajravelu and Hadjinicolaou [35] have considered hy-
dromagnetic convective heat transfer from a stretching sur-
face with uniform free stream and in the presence of internal
heat generation or absorption effects. Many investigations
have concentrated on the problem of a stretched sheet with
a linear velocity and different thermal boundary conditions
(see, for instance, [6,13,16,17,21,22,30,37]).

Very recently, many investigations studying the conse-
quent flow and heat transfer characteristics that are brought
about by the movement of a stretched permeable and im-
permeable, isothermal and non-isothermal surface with a
power-law velocity variation have been reported. Banks [4]
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considered the case of an impermeable wall and obtained a
similarity solution. Chiam [15] considered steady flow of an
electrically-conducting fluid over a surface stretching with a
power-law velocity in the presence of a magnetic field. Ali
[1–3] presented various extensions to Banks’ [4] problem
in terms of flow and thermal boundary conditions. All of
the preceeding references have dealt with two-dimensional
flow situations. During the last decade or so, some work
have been reported concerning three-dimensional and un-
steady flow situations. Wang [38] considered steady-state
three-dimensional flow caused by stretching flat surface.
Gorla and Sidawi [20] have reported similarity transforma-
tions and numerical solutions for the problem of steady,
three-dimensional free convection flow on a stretching
surface with suction and blowing. Surma Devi et al. [32]
have studied unsteady three-dimensional boundary-layer
flow due to a stretching surface. Lakshmisha et al. [24]
reported numerical solutions for three-dimensional un-
steady flow with heat and mass transfer over a continuous
stretching surface. Smith [29] has reported an exact so-
lution of the unsteady Navier–Stokes equations resulting
from a stretching surface. More recently, Pop and Na [26]
analyzed the problem of unsteady flow past a wall which
starts to stretch impulsively from rest. Chamkha [11] ex-
tended the work of Pop and Na [26] to include the ther-
mal problem and the effects of the presence of a Darcian
porous medium, magnetic field, and heat generation or
absorption.

1.1. Problem formulation

Consider the transient, laminar, three-dimensional natural
convective boundary-layer flow of an electrically-conducting
and heat-generating/absorbing fluid over a semi-infinite in-
clined permeable surface stretching in thex-direction with a
velocity that is linear with the distance along the surfacex.
Since the velocity would become very large at largex, the
latter must be limited at some finite distancex= xa at which
point the velocity becomes constant. They-direction makes
an angleα with the horizontal line while thez-direction is
normal to the plate surface. A uniform magnetic field is ap-
plied in they-direction. This gives rise to magnetic effects
in both thex and z directions. The application of the mag-
netic field in they-direction is done so as to allow suppres-
sion of convective flow in these directions. This is impor-
tant in terms of controlling the quality of the product being
stretched (see, [35]). In addition, uniform suction or injec-
tion is imposed at the plate surface in thez-direction. The
coordinate system and flow model are shown in Fig. 1. All
fluid properties are assumed constant except the density in
the buoyancy terms of thex- and y-momentum equations.
Assuming that the edge effects are negligible, all dependent
variables will be independent of they-direction [20]. Under
the usual boundary-layer and Boussinesq approximations,
the governing equations for this investigation are

Fig. 1. Problem schematics and coordinate system.
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wherex, y, andz are the coordinates directions.u, v, w, p,
and T are the fluid velocity components in thex, y, andz
directions, pressure and temperature, respectively.ρ, ν, cp

and Pr are the fluid density, kinematic viscosity, specific
heat at constant pressure, and the Prandtl number, respec-
tively. g, β, T∞ and α are the gravitational acceleration,
coefficient of thermal expansion, ambient temperature, and
the inclination angle, respectively.σ , B0, and Q0 are the
fluid electrical conductivity, magnetic induction, and dimen-
sional heat generation/absorption coefficient, respectively. It
should be noted that in writing Eqs. (1)–(5), the magnetic
Reynolds number is assumed small so that the induced mag-
netic field is neglected. Also, the Hall effect of magnetohy-
drodynamics, Joule heating, and the viscous dissipation are
neglected. In many physical situations such as crystal grow-
ing, the heat generation or absorption effects in the fluid
are greatly dependent on temperature. Sparrow and Cess
[31], Moalem [25], Vajravelu and Nayfeh [36], Chamkha
[9], and Vajravelu and Hadjinicolaou [35] have considered
temperature-dependent heat generation (source) or absorp-
tion (sink). Following these authors, the heat generation or
absorption term (last term) of Eq. (5) is assumed to vary
linearly with the difference of the fluid temperature in the
boundary layer and the ambient temperature atz=∞.

The appropriate boundary conditions for this problem can
be written as
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u(t, x, 0) = bx, v(t, x, 0) = 0, w(t, x, 0) = w0,

T (t, x, 0) = Tw u(t, x, ∞) = 0, v(t, x, ∞) = 0,

∂w

∂z
(t, x, 0) = 0, T (t, x, ∞) = T∞ (6)

wherew0 andTw are the wall suction or injection velocity
and temperature, respectively.

In order to minimize the numerical efforts to solve the
governing equations, the following transformations are in-
troduced:

τ = t, η = z√
νt

, u = bxφ′(τ, η) + 0cosα M(τ, η),

v = T sinα N(τ, η), w = −
√

b2νt φ,
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,
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Substituting Eq. (7) into Eqs. (1)–(6) reduces the number
of independent variables by one and produces the following
non-similar transient equations:
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where a prime denotes partial differentiation with respect
to η and Ha2 = σ B2

0/(ρb), γ = Qo/(ρ cp b) and
φw = −w0/

√
bν are the square of the magnetic Hartmann

number, the dimensionless heat generation/absorption coef-
ficient, and the wall mass transfer coefficient, respectively.
It should be noted that positive values ofφw indicate fluid
suction at the plate surface while negative values ofφw
indicate fluid blowing or injection at the wall. In addition, it
is seen that the advantage of employing the transformations
(7) is that they reduce the number of independent variables
by one and that similarity equations are obtained atτ = 0
In this way, the initial profiles or conditions forφ, φ′, M,
N, G, andθ are obtained by solving these similar equations
subject to the boundary conditions.

The transformed boundary conditions become

φ(τ, 0) = φ′(τ, 0) = 1, φ′(τ, ∞) = 0

M(τ, 0) = 0, M(τ, ∞) = 0, N(τ, 0) = 0, N(τ, ∞) = 0

G(τ, 0) = 0, φ(τ, 0) = 1, θ(τ, ∞) = 0 (13)

Important physical parameters for this flow and heat trans-
fer situation are the skin-friction coefficients in thex and y
directions and the local Nusselt number. The shear stresses
at the stretching surface in both thex and y directions, re-
spectively, are given by
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whereµ (=ρν) is the dynamic viscosity of the fluid. The
corresponding skin-friction coefficients in thex andy direc-
tions are obtained, respectively, by dividing Eqs. (14) and
(15) by the quantityρ(bx)2/2 which represents the dynamic
pressure to yield
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where Grx = gβ(Tw − T∞)x3/ν2 and Rex = bx2/ν are the local
Grashof and Reynolds numbers, respectively.

The wall heat transfer is given by Fourier’s law of con-
duction as follows
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wherek is the thermal conductivity of the fluid. The local
Nusselt number for this situation can then be defined as
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k
= qw x
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ν t
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whereh is the local heat transfer coefficient.

1.2. Numerical scheme

Eqs. (8)–(13) represent an initial-value problem in which
the initial profiles forφ′, M, N, G, andθ are obtained di-
rectly by solving the similarity equations obtained by setting
τ = 0 in these equations subject to the boundary conditions.
Once the initial profiles are obtained, a forward marching
technique inτ can be used to obtain the solutions for all
of the dependent variables at different times. The implicit
finite-difference method discussed by Blottner [5] which is
similar to the Keller’s box method (see [7]) have proven
to be successful for the solution of similar and non-similar
boundary-layer equations. For this reason, it is adopted for
the solution of the present investigation.

Non-uniform grid distributions in both theη andτ direc-
tions with small initial step sizes were used to accommodate
steep changes in the velocity and temperature gradients in
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Fig. 2. Effects of Haφw, γ and Pr onφ′(1,η).

the immediate vicinity of the wall and at the start of the
flow. The initial step size employed in theη direction was
1η1 = 0.001 and the growth factor wasK1 = 1.03 such that
1ηi+1 = K1 1ηi while an initial step size1τ1 = 0.001 and
a growth factorK2 = 1.03 such that1τj+1 = K2 1τj were
used in thet direction. A computational domain consisting
of 196 grid points in theη direction and 171 grid points in
theτ direction was utilized. This gaveη∞ ≈ 10 andτ∞ ≈ 5
The independence of the results from the grid density was
ensured and successfully checked by various trial and error
numerical experimentations.

All first-order derivatives inτ are replaced by two-point
backward-difference formulae. Then, Eq. (8) was converted
into a second-order ordinary differential equation by letting
F =φ′. Then, the resulting equation inF along with Eqs.
(9)–(11) were discretized using three-point central difference
quotients while the equationφ′ − F = 0 and Eq. (12) were
discretized by the trapezoidal rule. Linearization of the equa-
tions was performed by evaluation of the non-linear terms
at the previous iteration. At each line of constantτ , linear
tri-diagonal algebraic equations resulted which were solved
by the Thomas algorithm (see, [5]). The convergence crite-
rion required that the difference between the current and the
previous iterations be 10−5. When this condition was satis-
fied, the solution was assumed converged and the iteration
process was terminated.

Comparisons with the works of Pop and Na [26] and
Chamkha [11] for unsteady flow over a stretching sheet were
conducted and the results were found to be in excellent
agreement. It should be mentioned that these comparisons
required slight changes in the coefficients of Eqs. (8) and
(12) to make them similar to those reported by Pop and Na
[26] and Chamkha [11]. These favorable comparisons lend
some confidence to the accuracy of the numerical method.

Table 1
Parametric values for the curves used in the figures

Curve Ha Pr γ φw

I 0.0 6.7 0.0 0.0
II 3.0 6.7 0.0 0.0
III 0.0 6.7 0.0 −1.0
IV 0.0 6.7 0.0 1.0
V 0.0 6.7 −1.0 0.0
VI 0.0 6.7 1.0 0.0
VII 0.0 0.7 0.0 0.0

2. Results and discussion

Figs. 2–7 display the effects of all of the Hartmann number
Ha, the suction or injection parameterφw the heat generation
or absorption coefficientγ and the fluid’s Prandtl number
Pr on the profiles ofφ′(τ ,η) M(τ ,η) N(τ ,η), φ(τ ,η) G(τ ,η),
andθ (τ ,η) at τ = 1, respectively. In these and all subsequent
figures, the parametric conditions associated with each of
the curves present are given in Table 1. The parametric study
of the physical parameters involved in the problem is done
this way so as to minimize the number of figures needed for
this purpose. It should be noted that, for the reference case
(Curve I), water electrolyzed with a little of acid (Pr = 6.7) is
used as the working fluid. Application of a magnetic field in
the y direction to an electrically-conducting fluid gives rise
to a flow resistive force called the Lorentz force. This force
will have components in both thex and z directions. This
causes both parts ofx-velocity componentφ′ andM as well
as thez-component of velocityφ to decrease. However, the
velocity component in the y directionN, the fluid pressureG
and the fluid temperature tend to increase due to the presence
of the magnetic field. Also, imposition of fluid suction at
the stretching surface has the tendency to reduce both the
hydrodynamic and thermal boundary layers close to the wall.
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Fig. 3. Effects of Haφw, γ and Pr onM(1,η).

Fig. 4. Effects of Haφw, γ and Pr onN(1,η).

This will produce lower flow velocities and temperatures
and higher fluid pressures. However, injecting or blowing
fluid into the boundary layer through the surface of the plate
produces the opposite effect, namely, higher flow velocities
and temperatures and lower fluid pressures. It should be
mentioned here that injection of fluid into the boundary layer
must occur in limited amounts so as not to destroy the natural
convection phenomenon.

Obviously, the presence of a heat generation mecha-
nism causes the fluid temperatureθ to increase. This in-
crease in temperature is translated into increased thermal
buoyancy-induced flow along the surface. On the other
hand, heat absorption effects yield lower fluid temperatures

and, therefore, lower flow velocities along the plate. It
should be noted that Eqs. (8) and (11) governingφ′, φ and
G are uncoupled from the other equations and, therefore,
are unaffected by changes in the heat generation or ab-
sorption coefficientγ . In contrast with the heat generation
effect, increases in the fluid’s Prandtl number result in lower
temperature distributions and, therefore, reduced thermal
buoyancy-induced flow along the stretching surface. Again,
the profiles ofφ′, φ and G are unchanged by changes in
Pr for the same reason mentioned above. All of the above
mentioned behaviors are clear from Figs. 2–7.

Figs. 8–11 depict the transient changes in the wall slopes
of φ′, M, N, andθ as a result of changing any of the physical
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Fig. 5. Effects of Haφw, γ and Pr onφ(1,η).

Fig. 6. Effects of Haφw, γ and Pr onG(1,η).

parameters Ha,φw, γ and Pr, respectively. As indicated be-
fore, increases in the Hartmann number Ha has a tendency
to decrease the flow velocities in thex andz directions and
to increase they-component of velocity and temperature.
This flow retardation effect in thex direction causes lower
shear stresses at the stretching surface represented by de-
creases in the values ofφ′′(τ, 0) and M′(τ ,0) at any time.
However, the acceleration of flow in they direction resulting
from increasing Ha produces higher shear stresses in they
direction represented by the increases inN′(τ ,0). Also, the
increases in the temperature profile due to increases in Ha
result in higher wall temperature slopes. Therefore, the wall
heat transfer represented by−θ ′(τ ,0) decreases. The lower

flow velocities and temperatures resulting from application
of fluid suction at the surface are followed by decreases in
the wall slopes ofφ′ M, N, and θ (or higherθ ′(τ ,0) val-
ues) at every time. However, the opposite effect is obtained
for wall fluid blowing or injection. It should be noted that
the wall heat transfer−θ ′(τ ,0) is more responsive to suction
than injection as it increases sharply with time as is clear
from Fig. 11. As mentioned before, changes in either of the
heat generation or absorption coefficientγ or the Prandtl
number Pr produce no changes in the profiles ofφ(τ ,η)
and, therefore, no variations in the values ofφ′′(τ, 0). As
seen before, the physical effect of heat generation (γ > 0)
is the same as decreasing the fluid’s Prandtl number since
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Fig. 7. Effects of Haφw, γ and Pr onθ (1,η).

Fig. 8. Effects of Haφw, γ and Pr onφ′′ (τ ,0).

both situations produce higher flow temperatures and ther-
mal buoyancy-induced flow. Thus, in both situations, the
values ofM′(τ ,0), N′(τ ,0) and−θ ′(τ ,0) increase indicating
higher wall shear stresses in thex andy directions and lower
wall heat transfer (−θ ′(τ ,0)). On the other hand, heat ab-
sorption obtains the opposite effect which is reduced wall
shear stresses and higher wall heat transfer. All of the be-
haviors discussed above are clearly illustrated in Figs. 8–11.

3. Conclusion

The problem of transient, laminar, natural convection
boundary-layer flow of an electrically-conducting fluid

along an inclined porous surface stretching with a linear
velocity in the presence of a magnetic field, heat generation
or absorption, and fluid wall suction or injection effects was
investigated numerically. A new transformation was intro-
duced in which the governing unsteady three-dimensional
equations were transformed into non-similar equations.
By using this transformation, the number of independent
variables was reduced by one. The resulting equations pro-
duced their own initial conditions by solving the similarity
equations obtained atτ = 0. The numerical solution was
obtained by an implicit, iterative, finite-difference march-
ing technique. The accuracy of the numerical method was
tested by comparison of a special case of this problem with
previously published work. Numerical results for the ve-
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Fig. 9. Effects of Haφw, γ and Pr onM′(τ ,0).

Fig. 10. Effects of Haφw, γ and Pr onN′(t,0).

locity and temperature profiles were presented graphically
for various parametric conditions. In addition, the transient
development of the wall slopes for the velocity and thermal
functions were also displayed for different values of the wall
suction or injection parameter, Prandtl number, Hartmann
number, and the dimensionless heat generation/absorption
coefficient. It was found that imposition of fluid wall suction
increased the transient wall heat transfer distribution and
decreased the time history of the skin-friction coefficients
in both thex and y directions. The same was observed as
the fluid Prandtl number was increased. In addition, the op-
posite result was obtained as the dimensionless heat gener-
ation coefficient was increased, namely, higher skin-friction
coefficients and lower wall heat transfer time histories.
However, the effect of the magnetic field was found to be

decreasing the wall heat transfer and the skin-friction coef-
ficient in thex direction while increasing the skin-friction
coefficient in the y direction at any time. It is hoped that
the numerical results presented in this paper will be used
for validation of other studies on unsteady flow and heat
transfer from a stretching surface.

4. Nomenclature

b a constant having units of inverse time
B0 magnetic induction
cp fluid specific heat at constant pressure
Cf x skin-friction coefficient in thex direction
Cf y skin-friction coefficient in the y direction
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Fig. 11. Effects of Haφw, γ and Pr onθ ′(τ ,η).

g acceleration due to gravity
G dimensionless pressure
Grx local Grashof number
h local heat transfer coefficient
Ha magnetic Hartmann number
k fluid thermal conductivity
M function related to dimensionlessx-component of

velocity
N dimensionlessy-component of velocity
Nux local Nusselt number
p pressure
Pr Prandtl number
qw wall heat transfer
Q0 heat generation/absorption coefficient
Rex local Reynolds number
t time
T temperature
u x-component of velocity
ν y-component of velocity
w z-component of velocity
w0 wall suction or injection velocity
x,y,z coordinate system directions

4.1. Greek symbols

α surface inclination angle
β thermal expansion coefficient
η transformed variable combiningt andz
φ dimensionlessz-component of velocity
γ dimensionless heat generation/absorption coefficient
0 constant defined in Eq. (7)
µ fluid dynamic viscosity
ν fluid kinematic viscoisty
ρ fluid density

σ fluid electrical conductivity
τ time
τ zx shear stress in thex direction
τ zy shear stress in they direction
θ dimensionless temperature

4.2. Subscript

w wall
∞ ambient
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